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Project Description: 
• Identify and validate metal production technologies 

applicable to ISRU on Mars or the Moon
• Demonstrate end-to-end iron production via 

conversion of Mars or lunar analog materials to 
fabricated components

• Design a light metals production unit via lab-scale 
experiments and small-scale light metal preparation



• Mars baseline:
• Significant deposits rich in iron, magnesium, and silicon-

bearing minerals

• Water available for production of H2 and O2 

• Atmospheric CO2 available for production of CO and C 
reducing agents

• Also applicable to the Moon:
• Possibly requires feed enrichment

• Requires greater process recycle to minimize consumables



Primary Constituents of Target Metals, Oxides, and 
Reducing Agents: 

• Iron, Magnesium, Carbon, Silicon, Oxygen, Hydrogen

Primary ISRU Feed Stocks to Support EMP:
• Water, Carbon Dioxide, Iron Oxides, Silicon Oxides, 

Magnesium Sulfate, Ilmenite

Primary ISRU Processes to Support EMP:
• Thermochemical Reactions, Electrolysis, RWGS

Primary and Secondary Products: 
• Iron/Steel, Light Metals, Silicon/SiO2, Carbides, Silicides, 

Refractory Oxides



• Iron Production:

• Reduction by hydrogen or carbon monoxide to produce 

metallic iron

• Reduction with CO chosen

• Fe2O3 + CO = Fe + CO2

• Provides ability to generate carbon steels 

• Leverages Earth knowledge base for reducing/refining/heat treating

• Amenable to closed-loop Reduction-RWGS-Electrolysis  process

• RWGS to Regenerate CO from CO2

• CO2 + H2 = CO + H2O

• Electrolysis to Produce H2 to Support RWGS (and make O2 byproduct)

• H2O = H2 + 0.5 O2



• Iron Production (continued):
• Purification/Refining

• Physical beneficiation

• Melting, with slag/fluxes

• Possible direct use without further impurity removal

• Manufacturing
• Casting

• Sintering

• Extrusion

• Additive manufacturing (3D printing)



• Iron Production (continued):

• Example Feed Stocks

• Martian “blueberries”

• Occur as spherules of a few millimeters diameter

• Rich in hematite (Fe2O3) at 70% or more

• Little or no beneficiation required

• Undifferentiated soil

• Still relatively rich in iron oxide (order of 20% on Mars)

• Can be upgraded via aqueous processing prior to reduction

Pelletizer/Blueberry Simulant

Mars-1 Simulant and Residue;
Fe, Mg, Al, Ca Oxide Concentrates 
from Aqueous Processing



• Iron Production (continued):

• Process design

• 1 kg/day metallic iron production rate

• Batch solids reactor/continuous gas flow

• Generate free-flowing or lightly agglomerated product

• 750 – 900°C

• 0.5  - >2 bar absolute pressure

• Lower pressure → little or no carbon/carbides

• Higher pressure →more carbon/carbides

• Excess CO flow

• Drives reaction to completion faster (~60 minutes)

• Excess  CO is separated/recycled in closed loop process



• Iron Production (continued):
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• Light Metals Production:
• Magnesium is the preferred target

• Rich magnesium sulfate salts on Mars

• Thermally decompose to MgO, SO2, O2

• Mg metal has higher strength-to-weight ratio than aluminum

• Compatible with low pressure/CO2 Mars atmosphere

• High Mg vapor pressure enables alternative to molten salt electrolysis

• CO2 + H2 = CO + H2O (RWGS)

• CO = C + CO2 (Boudouard)

• SiO2 + C = Si + CO

• MgO + Si = Mg (vapor) + SiO2

“Pidgeon Process” (~1200°C)

High purity Mg
produced by
silicothermic
reduction



• Light Metals Production:
• Silicothermic Reduction of MgO

• Silicothermic reduction of MgO is not thermodynamically favorable

• However, high Mg vapor pressure allows Mg product to be removed as 
vapor – reaction continues when operating at low pressures

• Carbothermal Reduction of MgO
• Simpler process (eliminates Si production step)

• MgO + C = Mg (vapor) + CO (at >1200°C; low pressure)

• Requires fast separation of Mg vapors from CO to prevent back reaction

• Novel carbothermal reduction/product separation method is being 
investigated



• Manufacturing:
• Casting/Machining

• Sintering

• Additive Manufacturing

Metallic iron from Mars-1 simulant Fe2O3 concentrate

Sintered/machined iron from JSC-1 lunar simulant



• Additive Manufacturing Candidates:
• Powder-based technologies offer opportunity for 

manufacturing using minimally refined feeds:
• Powder Injection Technology

• Laser Metal Deposition (LMD)

• Powder Bed Technologies
• Selective Laser Sintering (SLS)

• Selective Laser Melting (SLM)

• Electron Beam Melting (EBM)

• Selection will be based on trades against 
hardware mass and power



Summary: 
• Many ISRU resources are available to support human 

space exploration
• ISRU process techniques can generate materials of 

sufficient quality for manufacturing
• Potential manufacturing methods, especially 

additive manufacturing, continue to evolve and 
improve





Carbothermal Reduction Experiments (Soil Simulants)

High-Temperature 
Laboratory Furnace

Feed (left) and Residue (right)
(JSC Mars-1 Simulant)

Residue  Close-Up Images
(Ca/Al rich glassy oxide slag and
ferrosilicon beads)



Carbothermal Reduction Experiments (Soil Simulants)

Fumed SiO Condensed
on Furnace Tube Walls
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Carbothermal Reduction Experiments (Soil Simulants) 

Ferrosilicon BeadsCondensed SiO Glassy Slag

Energy Dispersive X-Ray Spectra (EDS) from
Scanning Electron Microscope (SEM)



Carbothermal Reduction Experiments (Si-Rich Feeds)

Silica Sand/Carbon in Zr Crucibles
(top: before testing;

bottom: after reduction)

Si-Rich Mars-1 Simulant/Carbon in High-Density Graphite
(left: before testing; center: after reduction; 

right: after removing residue)



Silicothermic Reduction Experiments (Magnesia Feed)

Magnesium Product Resulting from 1250°C at ~1 mbar Pressure
(left: Mg on collection mesh and reactor walls;

center: Mg on upstream edges of collection mesh;
right: Mg crown peeled from cold zone reactor surfaces)



Silicothermic Reduction Experiments (Magnesia Feed)

Magnesium Crown Product
Scanning Electron Microscope (SEM) and Energy Dispersive X-Ray Spectra (EDS)
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